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Abstract In this work, we study the interference effect of two independent Bose–
Einstein condensates by numerical technique. Symplectic algorithm with high order
difference scheme is used to solve the one-dimensional (1D) Gross–Pitaevskii (GP)
equation. It is shown that the property of the interference between two condensates
resembles the double-slit interference, and the fringe is dependent on the relative
phase and the inter-spacing of the initial clouds. Interference of condensate consisting
of different number of atoms is also presented, and the fringe is shown to be unsymmet-
rical. The periodic evolution of the two condensates confined in a harmonic trapping
potential is studied and a much stronger interference pattern is shown.

Keywords Gross–Pitaevskii equation · Bose–Einstein condensation · Interference ·
Symplectic method

1 Introduction

The interference of Bose–Einstein condensates (BEC) has been much studied both
experimentally and theoretically for determining the coherence properties of the con-
densate [1–3]. It is a common procedure to produce one dimensional (1D) Bose–
Einstein condensate nowadays [4,5], and it is convenient to study the interference
effect in 1D BEC with a simple model wavefunction consisting of a linear combina-
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tion of two Gaussians. This wavefunction can describe many of the observed features
seen in the interaction of two clouds after they released. The interference of two con-
densates was studied to probe the condensate as coherence state and its relative global
phase [6]. Interference effect of three condensates was reported and was compared
with the two condensates case, and the existence of the global phase was further
demonstrated [7,8]. The dynamics of condensate in a magnetic trap and an optical
lattice was studied, and the evolution of interference for an array of condensates was
presented after the lattices were switched off [9]. The interference can happen in a
single condensate and which was discussed explicitly [10]. Experimentaly, the Bose–
Einstein condensate has recently been observed in a quasi-uniform potential and the
coherence nature of the condensate has been confirmed by a matter-wave interference
experiment [11].

In this work, we numerically study the interference effect between two condensates
by symplectic method. The wavefunction is governed by GP equation, a self-consistent
mean field equation which incorporates the interaction of atoms and the trapping poten-
tial [12]. It has a form of nonlinear Schrödinger equation and can be transformed into
Hamiltonian system which has symplectic structure. Symplectic method can preserve
the symplecic structure of the nonlinear Hamiltonian system and the normalization of
the wavefuction is naturally preserved in computation [13–16]. It is superior to some
other method in long-time and many-step computation.

In Sect. 2, we study the time-dependent 1D GP equation, transform it into dimen-
sionless form and discrete it symplectically. The ground state wavefunction is obtained
by symplectic method and the normalization of the wavefunction is tested. In Sect. 3,
we discuss the interference pattern of two condensates of different relative phase and
of different initial inter-spacing. The interference of two condensates with different
atom numbers is also discussed in this section. In Sect. 4 we present the interference
of two condensates confined in a harmonic trapping potential, periodic nature of the
condensates evolution is shown and the interaction of the condensates is discussed.
Finally conclusion is given in Sect. 5.

2 The time-dependent 1D GP equation and symplectic method

The 1D time-dependent GP equation with harmonic trapping potential can be written
as, [

− h̄2

2m

∂2

∂x2 + 1

2
mω2x2 + λ1D |ψ(x, t)|2

]
ψ(x, t) = i h̄

∂ψ(x, t)

∂t
, (1)

with λ1D = 4π h̄2as N
ma2 represents the interaction between atoms. Here m is the mass

of a single atom, ω is the frequency of the harmonic trapping potential, N is the total
number of atoms in the condensate, and as is the scattering length. a = √

h̄/2mω is
the harmonic oscillator length. Equation (1) can be rescaled into dimensionless form

[
− ∂2

∂ξ2 + ξ2

4
+ α |	(ξ, τ )|2

]
	(ξ, τ ) = i

∂	(ξ, τ )

∂τ
(2)
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with ξ = x/a, τ = ωt , then 	(ξ) = ψ(x)
√

a, and the nonlinear coefficient becomes
α = 8πNas/a. The normalization condition is

I =
∫ ∞

−∞
|ψ (x, t)|2 dx =

∫ ∞

−∞
|	(ξ, τ )|2 dξ = 1 (3)

If we write the wavefunction in terms of its real and imagine parts separately as
	(ξ, τ ) = u(ξ, τ )+ iv(ξ, τ ), then Eq. (2) becomes

u̇ = −vξξ + ξ2

4
v + α(u2 + v2)v

v̇ = −
[
−uξξ + ξ2

4
u + α(u2 + v2)u

]. (4)

In order to get high accuracy we adopt 4-order central space difference [17,18]

∂2u

∂ξ2 ≈ 1

12h2 [−u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2]
∂2v

∂ξ2 ≈ 1

12h2 [−v j−2 + 16v j−1 − 30v j + 16v j+1 − v j+2]
(5)

to discrete equation (4) in space, j = 0, 1, 2, . . . N , and h is the space step size. Zero
boundary condition is considered. It can be verified that Eq. (4) can be written into
Hamiltonian canonical equation

ż = J−1 ∂H

∂z
, z = (u0 · · · uN v0 · · · vN )

T (6)

with the hamiltonian

H = 1

24h2

N−1∑
j=1

[[−u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2]

+ [−v j−2 + 16v j−1 − 30v j + 16v j+1 − v j+2]
]

+
N−1∑
j=1

[
ξ2

j

8
(u2

j + v2
j )+ α

4
(u4

j + v4
j )+ α

2
u2

jv
2
j

]
(7)

where J =
[

0 IN

IN 0

]
is the standard symplectic matrix. Therefore, we can apply

symplecic algorithm in solving Eq. (6), such as the symplectic Euler-center scheme

zn+1 − zn

�τ
= J

(
∂H

∂z

)
(zn+1+zn)/2

, (8)
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Fig. 1 Evolution of the error of normalization of the wavefunction, α = 8π

which has quadratic invariant, or the symplectic Runge–Kutta scheme

zn+1 = zn + �τ

2
( f (Y1)+ f (Y2))

Y1 = zn +�τ

(
1

4
f (Y1)+

(
1

4
− 1

6

√
3

)
f (Y2)

)
(9)

Y2 = zn +�τ

((
1

4
+ 1

6

√
3

)
f (Y1)+ 1

4
f (Y2)

)

which is a fourth-order symplectic scheme, here �τ is the time step size.
In this paper, we adopt the Runge–Kutta scheme (9) in computation. Follow the

procedure proposed in Ref. [19], we obtain the ground state eigenvalue and the corre-
sponding wavefunction of the condensate. In our computation, space step h = 0.1, and
time step �τ = 0.001. When α = 8π , the eigenvalue is 4.51, and the wavefunction
is tested to be stable. The conservation of the normalization of the wavefunction is
tested. In Fig. 1, we plot the error of the norm Err(I) which is preserved to be 10−8,
and it assures the effective of the numerical scheme we used.

3 Interference between two condensates

In this section we study numerically the interference effect of two condensates. We con-
sider 133Cs,m = 2.2×10−25 kg, the scattering length as = 3.45 nm, ω = 2π×10 Hz
[20], then the harmonic oscillator length a = 1.95 µm. The condensates are separated
by a distance d and initially centered at ξ0 = ±d/2. With the wavefunction of α = 8π ,
we translate it to present the two condensates 	L(ξ, τ ) and 	R(ξ, τ )eiθ , where θ is
the relative phase between the condensates. The interaction of the two condensates
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Fig. 2 The interference patterns of two condensates at τ = 10 with different relative phase θ = 0 and
θ = π . d = 20, α = 8π

can be described by the linear combination	(ξ, τ ) = 	L(ξ, τ )+	R(ξ, τ )eiθ which
satisfy

[
− ∂2

∂ξ2 + α |	(ξ, τ )|2
]
	(ξ, τ ) = i

∂	 (ξ, τ )

∂τ
(10)

when the trap is removed. The time-dependent probability of the condensates can be
described by

ρ(ξ, τ, θ) =
∣∣∣	L(ξ, τ )+	R(ξ, τ )e

iθ
∣∣∣2
. (11)

The four order symplectic Runge–Kutta scheme (9) is applied in solving Eq. (10).
In comparison with the interference of two condensates in Ref. [6], we mainly dis-

cuss the effect of the relative phase θ and initial spacing d of the condensates. Firstly
we examine two condensates initially spaced at ξ0 = ±10, d = 20. At τ = 0, the
trapping potential is removed and the condensates expand, overlap, and interfere. The
corresponding interference pattern at time τ = 10 is plotted in Fig. 2 for different
relative phases θ = 0 and θ = π . The patterns are symmetric about ξ = 0 and com-
plementary between. The visibility of the central interference fringes is the best. The
fringe spacing is about 16 µ m. It shows that the position of the maximum interfer-
ence fringe is different for θ = 0 and θ = π , which indicates that the interference of
condensates is dependent on the relative phase between them.

Secondly we examine the influence of the initial spacing d on the interference.
The patterns of two condensates with different initial spacing d = 20 and d = 40
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Fig. 3 The evolutions of interference patterns of two condensates. θ = 0, α = 8π (a) d = 20, (b) d = 40

are compared in Fig. 3a, b, θ = 0. The condensates expand, overlap, and interfere
symmetrically. Through comparison we can see that at time τ = 15, the fringe spacing
in Fig. 3b for d = 40 is narrower than that of Fig. 3a for d = 20. That is, broader
initial spacing of two condensates results in narrower interference fringe spacing and
this feature resembles the law of double-slit interference of the monochromatic light.

Reference [11] realized BEC of atomic gas in quasi-uniform potential, and a inter-
ference experiment between a main condensate and a small one is done to confirm
the coherence nature. Motivated by this work, we discuss the harmonic potential
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Fig. 4 Interference pattern of two condensates with different number of atoms together with independent
evolution of each condensate. d = 10, θ = 0. Solid line for the condensate of α = 2π , dash dot dot line for
α = 8π , and short dot line for the interference fringes at time τ = 10. The trapping potential is removed
at τ = 0

case which is not uniform potential, and study the interference between two BECs
consisting of different number of atoms. Recall that α = 8πNas/a, we consider a
condensate of α = 8π to be the large one and another of α = 2π to be the small
one, then the ratio of the number of atoms in the condensates is 4:1, the difference
in atoms numbers is large. The two condensates are close to each other, they initially
spaced at ξ0 = ±5, d = 10. The trapping potential is set zero at time τ = 0, and
the condensates expand, overlap, and interfere. A numerical simulation is done and
the result is given in Fig. 4. The interference pattern at time τ = 10 is given together
with the independent evolution of each condensate. It shows that the large condensate
expands faster than the small one. At time τ = 10, the position of the maximum
central fringe is ξ = −0.7, and the whole interference fringes is not symmetric about
it. We also find that larger distance d will result in shorter fringe spacing, and weaken
the unsymmetrical property of the interference pattern at the same time. The interfer-
ence pattern between two condensates consisting of different number of atoms further
demonstrates the existence of the global phase.

4 Interaction of two condensates in a harmonic trapping potential

An existing of trapping potential will bring more interesting phenomenon [20]. In
this section we will discuss the interaction of two condensates in a harmonic trapping
potential. The two condensates are prepared and then transported symmetrically into a
harmonic well, d = 20, and the harmonic well is not removed during the examination.
The dynamic evolution of the condensates is given in Fig. 5, from which we can see

123



J Math Chem (2015) 53:128–136 135

0 1 2 3 4 5 6 7 8 9 10

-20
-15

-10
-5

0
5

10
15

20
0

0.2

0.4

0.6

0.8

τ
ξ

ρ(
ξ,

τ,
θ=

0)

Fig. 5 The evolution of two condensates confined in a harmonic trapping potential. d = 20, θ = 0
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Fig. 6 The interference patterns of two condensates with d = 20 confined in a harmonic trapping potential
at time τ = 1.6 with θ = 0 and θ = π respectively

that there is a periodic nature of the evolution. The condensates perform periodic
oscillation around the minimum of the harmonic trap with a period T = 6.288. Since
α > 0, the interaction between the atoms is repulsive, the period is larger than 2π .
The condensates evolved in the trapping potential without expansion, and interference
can be seen in their overlapping region.

The interference is much stronger due to the confinement of the trapping potential
as shown in Fig. 6, where we plot the interference fringes at time τ = 1.6 when the
two condensates fully overlap with θ = 0 and θ = π respectively. The existence of a
harmonic trapping potential greatly enhanced the visibility of the interference pattern
which can be of use in experimental observation. The position of the interference fringe
is complementary for the case of θ = 0 and θ = π , which means that the interference
pattern is still influenced by the relative phase when the condensates are confined.
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In sum, the condensates evolve periodically in the harmonic potential, interfere
with each other when they overlap, and maintain their shape after they passed through
each other, just like the interaction of two solitons [21].

5 Conclusion

In this work we solve the 1D time-dependent GP equation with symplectic method.
Four order Runge–Kutta scheme is used accompanied by high order central space
difference scheme, and the result is proved to be effective. The interference of two
condensates is studied, and it shows that the interference pattern is dependent on
the relative phase and the inter-spacing of the initial condensates in a manner as
the law of double-slit interference. Unsymmetrical interference pattern is shown for
the interference between a small condensate and a large one. We also examine the
interaction of two condensates confined in a harmonic trapping potential, periodic
behavior of the condensates is demonstrated and the interference in the overlapping
region is much stronger due to the confinement of the external potential.
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